A Family of Simple Non-Parametric Kernel Learning Algorithms
نویسندگان
چکیده
Previous studies of Non-Parametric Kernel Learning (NPKL) usually formulate the learning task as a Semi-Definite Programming (SDP) problem that is often solved by some general purpose SDP solvers. However, for N data examples, the time complexity of NPKL using a standard interiorpoint SDP solver could be as high as O(N6.5), which prohibits NPKL methods applicable to real applications, even for data sets of moderate size. In this paper, we present a family of efficient NPKL algorithms, termed “SimpleNPKL”, which can learn non-parametric kernels from a large set of pairwise constraints efficiently. In particular, we propose two efficient SimpleNPKL algorithms. One is SimpleNPKL algorithm with linear loss, which enjoys a closed-form solution that can be efficiently computed by the Lanczos sparse eigen decomposition technique. Another one is SimpleNPKL algorithm with other loss functions (including square hinge loss, hinge loss, square loss) that can be re-formulated as a saddle-point optimization problem, which can be further resolved by a fast iterative algorithm. In contrast to the previous NPKL approaches, our empirical results show that the proposed new technique, maintaining the same accuracy, is significantly more efficient and scalable. Finally, we also demonstrate that the proposed new technique is also applicable to speed up many kernel learning tasks, including colored maximum variance unfolding, minimum volume embedding, and structure preserving embedding.
منابع مشابه
یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملتشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روشهای هستهای
Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...
متن کاملPolicy search in kernel Hilbert space
Much recent work in reinforcement learning and stochastic optimal control has focused on algorithms that search directly through a space of policies rather than building approximate value functions. Policy search has numerous advantages: it does not rely on the Markov assumption, domain knowledge may be encoded in a policy, the policy may require less representational power than a value-functio...
متن کاملComparing Structure Learning Methods for RKHS Embeddings of Protein Structures
Non-parametric graphical models, embedded in reproducing kernel Hilbert spaces, provide a framework to model multi-modal and arbitrary multi-variate distributions, which are essential when modeling complex protein structures. Non-parametric belief propagation requires the structure of the graphical model to be known a priori. Currently there are nonparametric structure learning algorithms avail...
متن کاملSharp analysis of low-rank kernel matrix approximations
We consider supervised learning problems within the positive-definite kernel framework, such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of computing the kernel matrix, which most frequently leads to algorithms with running time at least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011